DOI: 10. 13491 /j. cnki .i ssn. 1004 -714x. 1997. 03. 035 中国辐射卫生 1997年第 6卷第 3期

• 丁作报告 •

桐乡市建筑材料中天然放射性水平

吴志英 胡志翔 王升观

(浙江省桐乡市卫生防疫站,桐乡市 314500)

为保障公众及其后代的安全与健康,根据《建筑材料放射卫生防护标准》(GB 6586- 86)(以下简称《标准》)和本省卫生厅有关文件,于 1995年 7月至1996年 3月对全市 106家建材厂成品中²³² Th ²³⁶ Ra和⁴⁰ K的放射性核素比活度进行了调查研究

1 方法

1.1 调查方法

对本市辖区所有水泥厂、多孔砖厂及大部分红砖厂生产的相应成品进行了采样调查。

1.2 采样方法

根据《标准》要求,在生产车间的建材成品堆上,取5个不同方位随机采集样品,混均后,用对角线法留取5kg样品,送检。

1.3 样品预处理

将样品粉碎,60目过筛后,以对角线法留取 1_{kg} 作为代表性样品, 100° 烘干,称取 800_g 装入样品盒 密封一个月后待测

1.4 比活度测定

采用法国产的 IN- 90多道 γ 谱仪 ,按《用半导体 γ 谱仪 分析低比活度 γ 放射性样品的标准方法》 (GB11713- 89)测定 22 Th 226 Ra和 40 K的放射性比活度。

- 2 结果与讨论
- 2.1 ²³²Th, ²³⁶Ra和⁴⁰K的比活度

本市建材中 23 26

附表 桐乡市建材中放射性核素比活度(Bq°kg-1)

建材种类		²³² Th		²²⁶ Ra		⁴⁰ K	⁴⁰ K		
	n	范围	$\bar{x}\pm s$	范围	$\bar{x}\pm s$	范围	$\bar{x}\pm s$	m_{Ra}	$m_{\rm r}$
9. 5红砖	81	70~ 110	82. 9± 6. 6	60~ 110	87. 0± 7. 9	650~ 900	774. 4± 95. 2	0.43	0. 74
多 孔 砖	7	70~ 90	82. 3± 7. 3	80~ 100	88.6± 6.3	650~ 900	792. 8± 78. 7	0.44	0.76
普硅水泥	18	50~ 100	61. ± 13. 2	60~ 110	85.6± 16.2	200~ 300	238. 9± 32. 3	0.43	0. 53
国内外典型值 [1]		3.7~ 240	67(- 58)	37~ 370	67(66)	11~ 2500	700(540)		

上述表中内照射指数 $(m_{\rm Ra})$ 和外照射指数 $(m_{\rm r})$ 的 值按国家建材《标准》中所提供的方法进行计算。

2.2 讨论

建材中的放射性核素主要来源于镭系、钍系和天然钾的放射性,近年来,国内外许多研究结果表明^[1,2],随着工业技术的发展,工业废渣和矿渣的开发利用增多,建材中放射性核素²³² Th. ²²⁶ Ra 和⁴⁰ K 的含量也随之增高。本市红砖、多孔砖和普硅水泥中都添加了一定量的工业废渣,其中以煤渣居多,而不同产地的煤中所含的天然放射性核素的含量是不一样的。如浙江产的石煤中天然放射性核素含量相对较高^[3],如果添加有这种煤渣的建材,其成品中放射性物质含量就较高,甚至可能超过国家《标准》中的限值。本市建材中三种放射性核素比活度的均值与国内外的典型值^[1]基本一致:

红砖、多孔砖和普硅水泥的 mad 基本一致:普

硅水泥的 m, 值较小,主要由于普硅水泥中 232 Th 和 40 K的比活度较小所致。本市已调查过的所有建材中 232 Th 226 Ra 和 40 K的比活度均低于国家建材《标准》限值,因此在居民和公共生活用房中的使用本市建材是比较安全的。

(参加本工作的还有省卫生防疫站的有关同志, 谨此致谢)

参考文献

- 1 任天山.建筑材料放射性和室内 7 辐射水平.中华放射医学与防护杂志,1987,7(1):59.
- 2 孙性善,等.建筑材料放射性限制量研究.中华放射医学与防护杂志,1986,6(5):289.
- 3 罗进.杭州地区轻质墙体砖中的放射性水平.中国辐射卫生,1996,5(3):164.

(1996年 10月 3日收稿)