【剂量·防护】

某医院放射卫生基本情况调查

汪润华

中图分类号: R14 文献标识码: B 文章编号: 1004-714X(2006)02-0194-01

【摘要】 目的 了解某医院放射卫生基本情况。方法 采用 FI-347、FD-71A 型仪器进行射线防护监测。个人 剂量采用热释光剂量方法监测。结果 60 Co 治疗机在贮源状态下超过国家标准限值,胸外科 X 射线机防护不合格,其 他各点未发现超标。个人剂量监测发现 1 人在 50 mSv 以上。结论 该单位射线装置及周围环境基本符合要求,个别装置防护有待改进,放射从业人员应加强个人防护意识。

【关键词】 放射; 剂量; 防护

某医院是一家综合性医院,放射从业人员 29 人。为了解该院放射基本情况,保障从业人员及公众的健康,改善防护水平,我们对该院⁶⁰ Co治疗室、CT室、X射线透视拍片室、胸外科X射线室、核医学科等进行了放射卫生防护监测,并对放射从业人员进行了个人剂量监测,现报告如下。

1 仪器与方法

- 1.1 仪器 环境监测用西安产 FJ-347 剂量仪, 上海产 FD-71A 小型闪烁辐射仪, 经中国计量院检定。 个人剂量监测用 FJ-377 热释光剂量仪。
- 1.2 监测方法^[1,2] 环境监测按照《医用 X 射线诊断卫生防护监测规范》(GBZ138-2002》(7) 射线和电子束辐照装置防护检测规范》(GBZ141-2002)对作业场所及外环境进行监测。个人剂量监测按照 放射工作人员个人剂量监测规定》的要求,每年对放射工作人员进行个人剂量监测,每个测读周期为3个月。

2 结果与分析

- 2.1 ⁶⁰Co 治疗机防护监测结果
- 2.1.1 治疗室内监测结果(表 1)

表 1 ⁶⁰Co 治疗机周围测量结果(µGy/h)

测量位置	前	左前	左	左后	后	右后	右	右前
0.5 m 处	750	150	550	300	500	500	250	550
1 m 处	250	100	350	100	250	150	50	200
2 m 处		50		50	150	100		

另外迷道口为 1.6μ Gy h, 迷道中为 0.8μ Gy h。 国家标准规定 5 cm 处不大于 200μ Gy h。 1 m 处不大于 50μ Gy h。

- 2.1.2 治疗室外环境监测结果 出源状态下, 机房门外 5 cm 处测 9 个点为 $1.6 \sim 1.8 \mu$ Gy /h, 机房门外 1 m 处为 0.8μ Gy /h, 走廊候诊处 0.3μ Gy /h, 机房门外 2 m 处 0.34μ Gy /h, 控制室门口 0.8μ Gy /h, 控制台前为 0.18μ Gy /h。
- 2.2 500 mA X 射线透视拍片机测定结果
- 2.2.1 透视(隔室透视)条件下测量结果 操作台铅玻璃测 3 个点,在 0.18~0.24 μ Gy/h 之间。机房南门 5 cm 处为 8.0 μ Gy/h,东墙外走廊为 0.24 μ Gy/h。
- 2.2.3 距焦点 1 m 处漏射线测量结果 共测水平 8 个点 30 ~ 600 μGy/h 均未超标(标准限值< 1 000μGy/h)
- 2.3 胸外科 30 mA X 射线机测定结果
- 2.3.1 机房内测立位 13 个点除 4.6.8、13 号 4 个点不超标外

(标准限值 $5\mu Gy/h$), 其余各点全超标, 最高达 $100\mu Gy/h$ 。

2.3.2 30 mA X 射线机工作场所与邻近环境测量结果(表 2) 表 2 工作场所及周围环境测量结果(μGv/h)

测量位置	剂量率	测量位置	剂量率
机房门外 5 cm 处	1. 5	机房门西 1 m 处	0.8
机房门外 1 cm 处	6. 0	机房门东1m处	1.0
机房门外 2 cm 处	4. 0	机房西墙外 5 cm 处	0.2

2.4 CT 机工作场所与邻近环境测量结果 测试条件 133 kV、 175 mA、2.7 s。 CT 室北门外 5 cm 处测 9 个点为 $0.6 \sim 1.2 \mu \text{Gy/h}$ 之间, CT 控制台 铅玻璃外 5 cm 处 测 9 个点为 $0.2 \sim 0.24 \mu \text{Gy/h}$, CT 室东门外 5 cm 处测 9 个点为 $0.2 \sim 0.24 \mu \text{Gy/h}$, CT 室东门外 5 cm 处测 9 个点为 $0.2 \mu \text{Gy/h}$, CT 室门外 2 m 处 走廊为 $0.2 \mu \text{Gy/h}$.

2.5 核医学科监测结果(表 3)

表 3 核医学科工作场所及周围环境测量结果(HGy/h)

测量位置	剂量率	测量位置	剂量率
核医学科大门	0. 18	诊断室内	0. 18
诊断室门口	0. 20	办公室内	0. 18
办公室门口	0. 18	放免(1)室内	0. 20
放免(1)室门口	0. 18	放免(1)室内操作台	0. 20
实验室门口	0. 24	实验室中心	0. 20
实验室内门口	0. 20	实验室内室内	0. 30
放射贮存库门口	0. 50	放射贮存库室内	1. 60
显像室门口	0. 18	贮存室内操作台	2. 00
放免(2)室门口	0. 18	显像室室内	0. 18
功能室门口	0. 18	放免(2)室内	0. 20
核医学科走廊	0. 18	功能室内	0. 18

2.6 个人剂量监测结果 该单位放射工作人员 29 人(女工5人)年龄在 $22 \sim 62$ 岁之间平均年龄 38.85 岁, 平均工龄 17.86 a, 个人剂量年剂量当量 $0.95 \sim 2.2$ mSv 之间, 其中 50 mSv 以上 1人, $5 \sim 50$ mSv 之间 5 人。体检未发现异常, 50 mSv 以上 1人是介入治疗人员, 其他 5 人集中在核医学科 3 人, 放射科 2 人。

3 讨论

- (1)⁶⁰Co 治疗机 0.5 及 1 m 处分别有 7 个点超过国家标准限值,可能是由于设备时间长,刚刚更换新放射源的原因,建议工作人员尽量减少放疗室停留时间,尽快修复警示灯,外门加强屏蔽。
- (2) CT 室两个门应加强屏蔽工作,工作时操作人员不要离开操作室,同时家属应减少陪同时间。
 - (3)透视拍片室应加强南门的屏蔽,操作时关闭好该门。
- (4) 胸外科 30 mA X 射线机防护性能差,立位 9 个点全部超标,工作人员接触时间长,在做好个人防护的同时,加强门窗屏蔽,尽快更新设备,尽量减少使用次数。

作者单位:安阳市职业病防治所、河南 安阳 455000 作者简介:汪润华(1965~),主管医师,主要从事放射卫生、职业卫生工作。

【剂量。防护】

临床核医学实验室通风橱的设计

吕素军,舒心,孙永朋,张丹枫

中图分类号: R817.33 文献标识码: B 文章编号: 1004-714X(2006)02-0195-01

【摘要】 目的 为临床核医学设计一种比较适用的通风橱。方法 根据用途与操作性质,参考有关资料,总结已有的经验提出设计方案。结果 提出了一套较完整的狭缝式通风橱的设计方案。结论 为核医学科和通风橱制造商提供了有益的设计资料。

【关键词】 核医学; 通风橱; 辐射防护

临床核医学应用放射性核素进行疾病的诊断和治疗,属于 开放型放射性操作,为防止放射性污染扩散,保障操作者及周 围环境的安全,需要在专门设计的通风橱内进行操作。根据笔 者从事辐射防护工作之所见,目前市售通风橱在设计上不甚完 善,而在辐射防护书刊中亦罕见有关通风橱的设计资料。为 此,笔者根据核医学之用途及操作性质,参考有关资料¹¹,总结 已有的经验,提出如下之设计方案,以供参考。

1 设计思路

对通风橱的设计,主要考虑以下几点。

- 1.1 安全性 根据核医学常用放射性核素^{99m}Te、¹³¹I和¹⁸F的特性 必须采取内照射防护和外照射防护兼顾的措施 才能保证安全
- 1.1.1 内照射防护措施 ①通风橱之密闭性能和通风排气过滤性能良好,防止^[3] I 产生的气溶胶扩散。②通风橱上端之排气管道口,必须超过 30m 范围内最高建筑 3 m 以上。③通风橱内壁及台面的材料必须光滑、防渗、耐酸碱。易清除污染。④通风橱内设有净水和污水管道。
- 1.1.2 外照射防护措施 通风橱四壁和平台(操作者可能受到照射的范围),对所用放射性核素产生的 γ 射线应有足够的屏蔽防护。
- 1.2 适用性 通风橱的规格、橱台、下橱、橱门及其附属设施的设计,均应符合安全、方便、灵活和一橱多用的原则。
- 1.3 耐久性 所用材料与配件耐磨损、耐腐蚀、防锈、结构合理、不易损坏。
- 1.4 艺术性 造型美观、设计巧妙、用料考究、价位适中。

2 结构形式

2.1 整体结构 常用通风橱有三种类型:即顶抽式、自然通风式和狭缝式。目前市售通风橱大多为前两种,其结构简单,造价低,但其排风效果难以满足核医学之开放型操作。狭缝式通风橱在其顶部和后侧设有排风狭缝,后侧部分的狭缝可设一至

作者单位: 山东省医学科学院, 山东 济南 250062 作者简介: 吕素军(1960~), 男, 副研究员。

- (5)该单位核医学科1999年曾发生过一次放射源污染事故,本次监测未发现有超标地点。
- (6)该单位现有 29 名放射工作人员, 历次个人剂量监测中, 年剂量当量均在 50 mSv 以下, 本次在 0. 9~52.2 mSv 之间可能由于系统误差, 也可能偶然剂量超过国家标准限值, 历年个人剂量在 5~50 mSv 之间的人员, 主要集中在核医学科 3 名配药人员 1.47~20.8 mSv, 放射科 3 名介入治疗人员 1.73~52.2 mSv 中间。这与该单位胸外科 X 射线机防护性能差有密切关系。因此要求该单位放射工作人员严格按照规章制度操作, 在

两条(见图 1),由于上、中、下三个部位都设有排气口,而且气流流经狭缝时,有节流效应,使通风橱内有一股较强的负压气流,而操作口处的风速比较均匀,适用于各类操作,但其结构相对复杂,制作比较麻烦。通风橱的外型,可根据使用要求和制作工艺做成直形(见图 2),下直上斜形(见图 1)或其他形状。

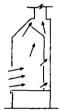
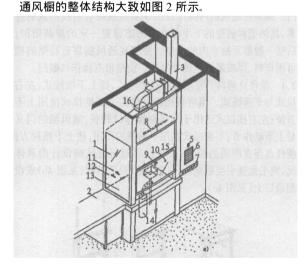



图1 狭缝式通风橱剖面

I- 通风橱; 2-工作台; 3-通风管道; 4-过滤器; 5-通风橱开关指示灯; 6-活动百页窗; 7-热水、冷水、煤气、照明电插座及压缩空气开关; 8-照明; 9-冷水、热水出口; 10-电插座; 11-煤气; 12-压缩空气; 13-底盘; 14-陶瓷罐; 15-拉窗; 16-调节板

图 2 通风橱结构示意图

做好健康体检的同时,对个人剂量在 $5 \,\mathrm{mSv}$ 以上的人员要密切观察。

参考文献:

- [1] 张钦富,杨晓发,程晓军,等.电离辐射与防护[M].郑州:河南医科大学出版社,1999,240—244.
- [2] 杜杰,邓致荣,郑金福,等.某部队医疗放射工作人员个人 剂量水平评价[J].中国辐射卫生,2005,14(3):198—199.

(收稿日期:2005-10-16)