• 监测技术 •

一次铀分析仪自校准实施过程及结果分析

王蕾 ,于海林

山东省辐射环境管理站 山东 济南 250117

摘要:目的 对 BD11 - MUA 型铀分析仪的一次自校准的实施方法和实验结果进行分析。方法 根据 BD11 - MUA 型铀分析仪结构原理和自校准技术要求 对仪器的结构与外观及仪器线性、检出下限、精密度、稳定性 4 个参数进行分析。结果 BD11 - MUA 型铀分析仪线性、精密度、稳定性等指标符合仪器管理的标准。结论 该仪器运行正常 量值准确 测量过程处于受控状态。

关键词: BD11 - MUA 型铀分析仪: 自校准: 参数: 受控状态

中图分类号: R144 文献标识码: B 文章编号: 1004 - 714X(2016) 06 - 0732 - 03

DOI:10.13491/j.cnki.issn.1004-714x.2016.06.033

铀是存在于自然界中的一种稀有化学元素,具有放射性。随着人们防辐射意识的增强,放射性污染成为社会关注的热点,其中对铀的监测不可缺少。BD11 - MUA 型铀分析仪用于地表水、海水、饮用水等各种水样中铀的激光液体荧光测定。固体样品用适当方法转化为液体后,也可测量。根据 BD11 - MUA 型铀分析仪结构原理和自检定工作要求,对仪器的结构与外观及仪器线性、检出下限、精密度、稳定性 4 个参数进行考察。以确保仪器运行正常,为客户提供公正、准确、可靠的数据。

1 材料与方法

1.1 监测依据 ①《MUA 型微量铀分析仪使用说明

作者简介: 王蕾 ,女 ,从事辐射环境监测工作。

量虽然明显低于常规剂量组,但是在一些较为复杂的 诊疗过程中,低剂量扫描条件并不能满足诊疗需要,一些病灶区域只能通过常规条件或更高的条件来实 现^[7],这样很可能会造成重复照射,反而增加了患者的辐照危险系数。所以一味的追求低剂量并不现实。

由此可见 合理减少 CT 检查所致受检者剂量是个复杂的问题 需要放射防护机构、医疗器械研发生产单位以及临床医疗部门等各专业的协作,进一步深入开展 CT 检查的影像质量与所致受检者剂量的优化研究,建立科学实用的放射诊断的医疗照射参考(指导) 水平。

参考文献

 United Nations Scentific Committee on the Effects of Atomic Radiation. Medical radiation exposures: UNSCEAR 2000 report to the Gen书》(北京羽纶科技有限责任公司 2001 年 3 月);② 《激光荧光微量铀分析仪》(EJ/T823 - 94)。

1.2 术语

1.2.1 检出下限 D•L 表征铀(U) 荧光强度 F 的变化与所测浓度 C 值的变化之比 即:

$$Su = \triangle F / \triangle C \tag{1}$$

指在给定置信度下, 仪器能够检测出的最小浓度 *D•L* 由下式表示:

$$D \cdot L = 3S/Su \tag{2}$$

式中: S - 测量值的标准偏差。

- 1.2.2 铀荧光增强剂 在特定的化学体系中,能增强铀的受激发光强度的试剂称为铀荧光增强剂。
- 1.2.3 精密度 用浓度为 $0.1 \mu g/L$ 的铀标准溶液,加铀荧光增强剂测量十次。设每次测量的荧光读数
 - eral Assembly [M]. New York ,NY: United Nations 2000: 295 495.
 - [2] Linton OW, Mettler FA Jr. National Conference on Dose Reduction in CT, With an Emphasis on Pediatric Patients [J]. AJR Am J Roentgenol 2007, 181(2):321-329.
 - [3] ICRP. ICRP Publication102 Managing Patient Dose in Mult detector Computed Tomography [M]. Oxford: Pergamon Press 2007.
 - [4] Oh HY, Kim EY, Kim JE, et al. Trends of CT Use in the Pediatric Emergency Department in a Tertiary Academic Hospital of Koreaduring 2001 – 2010. Korean J Radiol 2012, J3: 771 – 5.
 - [5] UNSCEAR. UNSEAE 2008 Report Sources and Effects of Ionizing Radiation ,Vol. I [M]. NewYork: UN 2010.
- [6] 高林峰 郑钧正 卓维海 筹. 医用 X 射线 CT 主要检查类型所致 成年受检者剂量研究[J]. 辐射防护 2013 33(2):75 -80.
- [7] Lucey BC, Varghese JC, Hochberg A, et al. CT guided Intervention with Low Radiation Dose: Feasibility and Experience [J]. Am J Roentsenol, 2007, 188; 1187–1194.

收稿日期: 2016 - 09 - 23 修回日期: 2016 - 10 - 28

为 F_i ,求取标准偏差 S ,由公式(3) 计算其精密度 V:

$$V = \frac{S}{F} \times 100\% \tag{3}$$

式中: \overline{F} – 为 F_i 的算术平均值。

1.2.4 稳定性 调灵敏度 使铀浓度约为 2 μg/L 的 标准铀样读数为 850 左右,仪器预热一个小时后测 量。其荧光强度最大偏差 δ_{max} 绝对值用下式求取:

$$\delta_{\text{max}} = \left| \frac{F_{i_{\text{Aax}}} - \overline{F}}{\overline{F}} \right| \times 100\% \tag{4}$$

$$\delta_{\text{max}} = \left| \frac{F_{i \text{ min}} - \overline{F}}{\overline{F}} \right| \times 100\% \tag{5}$$

式中: $F_{i \text{ max}}$ – 荧光读数 F_i 的最大值; $F_{i \text{ min}}$ – 荧光 读数 F_{ϵ} 的最小值: \overline{F} – 荧光读数的算术平均值。

取(4)式与(5)式所计算的较大值做仪器稳定性 考核检查数据,应不大干8%。

1.3 技术要求

- 1.3.1 结构与外观 用目视检查仪器结构是否牢 固、无松动。要求表面无明显损伤 标记清晰。
- 1.3.2 仪器线性 相关系数≥0.995。
- 1.3.3 量程范围 0~20 µg/L; 如果改变灵敏度可 扩展到 1000 μg/L 量级。
- 1.3.4 检出下限 以标准偏差的三倍定义时 D.L≤ $0.03 \, \mu g/L_{\odot}$
- 1.3.5 精密度 铀浓度在 0.1~2 μg/L 范围时 RSD ≤ ±8% ∘
- 1.3.6 稳定性 每半小时读一个数,每个读数取二 次的平均值 三个小时七次读数的最大偏差不大于 ±

8% .

1.4 工作条件

- 1.4.1 使用交流 220 V(±10%) 50 Hz(±0.5 HZ) 电源。在电压变化较大地区应使用电子稳压器。
- 1.4.2 工作环境 温度应在 10℃~30℃之间 相对 湿度小于 85% (30℃)。在南方等潮湿环境,实验室 应加装空调和去湿机。存放和使用仪器的环境不能 有酸、碱气体,否则光学片子腐蚀变霉,严重影响灵敏 度。仪器用于精确分析,方法本身受温度等因素变化 影响 因此测量时必须注意温度等因素的变化。为保 证分析质量,被测样品、标样溶液和仪器等最好放置 到同一环境 10 h 以上。

2 实验结果

- 2.1 结构与外观 经目视检查仪器结构牢固、无松 动。表面无明显损伤 标记清晰。
- 2.2 线性 实验结果如表 1、表 2 图 1、图 2 所示:

低浓度范围 表 1

荧光强度读数							
第一次	第二次	第三次	平均值				
133	127	127	129				
159	156	154	156				
185	183	181	183				
262	251	245	253				
377	363	363	368				
446	438	437	440				
531	529	523	528				
527	523	522	524				
	133 159 185 262 377 446 531	第一次 第二次 133 127 159 156 185 183 262 251 377 363 446 438 531 529	第一次 第二次 第三次 133 127 127 159 156 154 185 183 181 262 251 245 377 363 363 446 438 437 531 529 523				

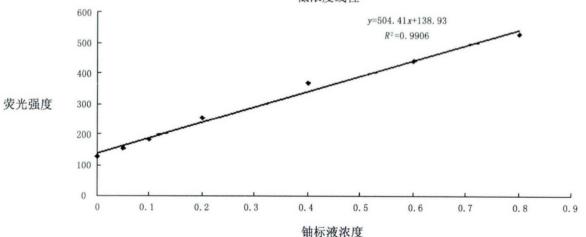


图 1 低浓度范围拟合曲线及回归方程

0.995; 量程范围: 0 ~ 0.8 × 10⁻⁹ g/ml; 在高浓度范围

由检验数据所得,在低浓度范围内相关系数 r = 内相关系数 r = 0.996, 量程范围: $(1 \sim 12) \times 10^{-9}$ g/ml。相关系数和量程范围均符合自检定要求。

表 2 高浓度范围

 铀标准溶液	荧光强度读数						
浓度(10 ⁻⁹ g/ml)	第一次	第二次	第三次	平均值			
0	133	127	127	129			
1	858	855	842	852			
2	1589	1581	1565	1578			
4	3167	3116	3086	3123			
6	3718	3740	3800	3753			
10	6907	6907	6859	6891			
12	8707	8665	8558	8643			

2.3 检出下限 D•L 用去离子水(或二次蒸馏水) 做加铀荧光增强剂的十次测量 ,每次测量值为 F_i ,求 取标准偏差 S_o 将表 1 中的测量值代入低浓度标准曲 线 ,用(1) 式求取灵敏度 Su ,把 S 和 Su 代入公式(2) 求取检出下限 D•L。

标准偏差 S = 1.9

$$Su = \triangle F / \triangle C = 399 / 0.52 = 767.3$$

 $D \cdot L = 3S/Su = 0.007 < 0.03 \ \mu g/L$,符合自检定要求。

高浓度线性

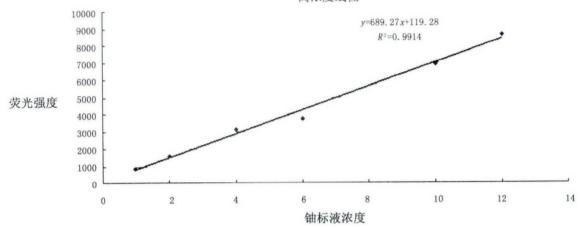


图 2 高浓度范围拟合曲线及回归方程

表 3 荧光强度测量值

133	127	127	127	128	129	127	127	129	127
 100	127	127	127	120	127	127	127	127	127

2.4 精密度 用浓度为 $0.1 \mu g/L$ 的铀标准溶液 "加 铀荧光增强剂测量十次。每次测量的荧光读数为 Fi , 求取标准偏差 S ,由公式(3) 计算其精密度 V:

S = 3.9 $\overline{F} = 179$ $V = \frac{S}{F} \times 100\% = 2\% < 8\%$ 符合

自检定要求。

表 4 荧光强度测量值(F_i)

	185	183	181	182	179	178	177	175	172	
--	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

2.5 稳定性 实验结果如表 5 所示 ,于 10 点 15 分测量第一次 ,11 点 15 测量第二次 ,至 16 点 15 分共测量 7 次。

表 5 荧光强度测量值(F_i)的变化

10: 15	11:15	12: 15	13: 15	14: 15	15: 15	16: 15
835	963	994	1013	1037	1037	1048

$$\delta_{\max} = \left| \frac{F_{i,\min} - \overline{F}}{\overline{F}} \right| \times 100\% = 6.87\% < 8\%$$
 符合自

检定要求。

3 结论

经过对 BD11 - MUA 型铀分析仪的结构与外观的

观察、对仪器线性、检出下限、精密度、稳定性4个参数进行分析,证明该仪器运行正常,量值准确,测量过程处于受控状态。

参考文献

- [1] 王为农. 校准与校准规范[J]. 江苏现代计量 2012(1):115-
- [2] 文世荪. 铀标准溶液的配制及标定[J].《安徽预防医学杂志》, 1997(4):53-54.
- [3] 国家技术监督局. GB/T 6708 1986 水中微量铀分析方法[S]. 北京: 中国标准出版社 ,1986.
- [4] 中华人民共和国国家质量监督检验检疫总局. GB 14883.7-94 食品中放射性物质检验 天然钍和铀的测定[S]. 北京: 中国标准出版社 2005.

收稿日期: 2016 - 04 - 29 修回日期: 2016 - 06 - 23