【论著】

一种内源式²²⁰ Rn 室的研制

唐方东'赵超'卓维海'何林锋'陈波'张辉'

中图分类号:TL811 文献标识码:A 文章编号:1004-714X(2011)03-0273-02

【摘要】 目的 为开展各种 220 Rn 浓度测量仪器的校准 研制 220 Rn 室。方法 基于程控式恒温恒湿实验箱 .设计 温度和湿度可控的内源式²²⁰ Rn 室; 利用树脂吸附法制备颗粒状²²⁰ Rn 源 ,合理设置²²⁰ Rn 源并借助四个内置风扇的风 速调节以实现 220 Rn 浓度的均匀分布。结果 在同一温度和湿度条件下, 220 Rn 室内 220 Rn 浓度变化范围小于 $\pm 3.0\%$, 且在有效体积范围内(约 200 L), 200 Rn 浓度分布基本均匀(波动范围小于 ± 5.5%); 200 Rn 室内 222 Rn 浓度可忽略不 计。结论 该²²⁰ Rn 室内²²⁰ Rn 浓度稳定且分布均匀,可用来开展²²⁰ Rn 浓度测量仪器的校正或比对实验。

【关键词】 220 Rn 室; 稳定性; 均匀性; 校准

Development of A 220 Rn Chamber with Inner Sources. TANG Fang – dong , ZHAO Chao , ZHUO Wei – hai , et al. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203 China.

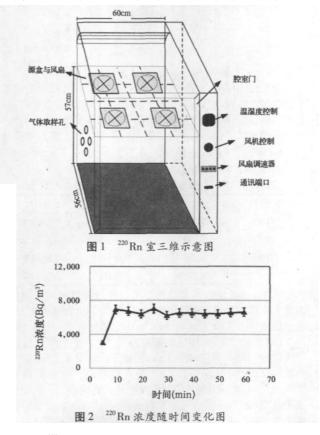
(Abstract) Objective To develop a ²²⁰Rn chamber for calibrations of ²²⁰Rn measurement device. Methods Based on a programmable constant temperature and humidity testing device, a 220 Rn chamber with inner sources was designed. The granular 220Rn sources were prepared by using the adsorption method of resins. In order to produce a uniform distribution of ²²⁰Rn in the chamber , four minielectric fans were used to adjust the wind directions and speeds in the chamber in addition to a reasonable setting of the sources. Results
Under the same temperature and humidity conditions , ²²⁰Rn concentrations in the chamber fluctuated within only $\pm 3\%$, and the spatial distribution of 220 Rn was nearly homogenous in an effective volume of about 200 L. ²²²Rn concentrations in the chamber could be neglected. **Conclusion** ²²⁰Rn concentrations in the chamber are stable and uniform, the chamber can be used for calibration or intercomparison experiments of ²²⁰Rn measurements.

(Key words) ²²⁰Rn chamber; Stability; Uniformity; Calibration

国内外的室内环境放射性调查业已表明[1-3] 在某些地区 或特定的室内环境条件中, 室内²²⁰Rn 浓度很高, ²²⁰Rn 及其子体 所致居民的年均有效剂量已达到或超过同一环境中²²²Rn 及其 子体所致的剂量。另一方面,高浓度²²⁰ Rn 的存在也可能会影 响²²²Rn 浓度的准确测量^[4]。为此,在开展室内²²²Rn 浓度调查 的同时, 也有必要加强室内²²⁰ Rn 浓度的测量。但是,相对于 ²²²Rn浓度的测量及其校准工作而言,目前可测量²²⁰Rn 浓度的 仪器种类有限 且对这些仪器尚缺乏有合理的校准(或刻度)手 段 $^{[5-7]}$ 。为了克服 220 Rn 浓度测量标准的难题 本研究自行设计 了一款新的²²⁰ Rn 室 并对其性能进行了较为全面的实验研究。

1 材料与方法

- $1.1^{-220} {
 m Rn}$ 室的结构 基于一台容积约为 $300~{
 m L}$ 的程控式恒温 恒湿箱 在箱内增设可移动金属网架 将四个装有颗粒状²²⁰Rn 源 的丝网盒和小型电风扇组件均匀固定在金属网架上(见图1)。 该²²⁰ Rn 室的有效体积约 200 L(长 56 cm 宽 60 cm 高 57 cm); ²²⁰ Rn 源用钠型强酸树脂吸附 ThNO4 溶液制备得到 ,每颗树脂的直 径为 0.3 mm ~ 0.8 mm; 在每个源盒下方各放置一个风压朝下的 可调风扇 腔体内风速在 0.2 m/s~1.5 m/s 之间可调。
- 1.2 220 Rn 浓度及其分布测量 用美国 DURRIDGE 公司生产 的 Rad7 型测氡仪连续测量²²⁰ Rn 室内的²²⁰ Rn/²²² Rn 浓度; ²²⁰ Rn 浓度的空间分布利用二维辐射成像板(日本富士胶片公司生产 的 BAS – MS 2040 型 IP) 并结合自行研发的 α 辐射甄别技术 [8] 开展静态测量。


2.1 ²²⁰Rn 浓度的平衡时间 放入²²⁰Rn 源后 ,每 5 min 监测得

基金项目:国家质检总局科技计划项目(2009QK099) 在董城日: 国家城市公司和13以 13以日 12007(12007) 作者单位: 1 上海市计量测试技术研究院, 上海 201203; 2 复旦大学放射医学研究所, 上海 200032 作者简介: 唐方东(1964~) 男, 上海人, 高级工程师, 主要从事电离辐射

计量技术研究工作。

通讯作者:卓维海: E - mail: whzhuo@ fudan. edu. cn

到²²⁰Rn 室内²²⁰Rn 浓度的结果见图 2。从图 2 可看出 ,10 min 后²²⁰ Rn 室内²²⁰ Rn 浓度就已基本趋干稳定。在 10 min ~ 30 min 之间 ,²²⁰ Rn 浓度的微小波动主要是由于温湿度控制尚未达 到相应的设定值。本实验结果表明,只要恒温恒湿箱的温湿度 达到了设定的数值 ,²²⁰ Rn 室内的²²⁰ Rn 浓度便可达到平衡。

²²⁰Rn 浓度的稳定性 图 3 显示了在设定的温湿度条

件下 ,每小时监测得到 20 Rn 室内 20 Rn 浓度、温度与相对湿度的结果。从图 3 可看出 在连续的 50 h 内 , 20 Rn 浓度基本保持恒定(波动范围均小于 $\pm 3\%$) 温度维持在(20 ± 0.2) $^{\circ}$ 湿度维持在(40 ± 1) % RH。表明了该 20 Rn 室的 20 Rn 浓度稳定性良好 且温度和相对湿度的相对波动均小于 20 Rn 浓度的波动 ,可保证 200 Rn 室在一般应用中的稳定性要求。

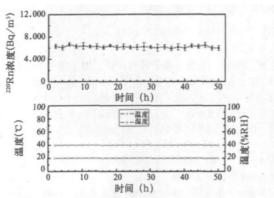


图 3 220 Rn 室内 220 Rn 浓度、温度与相对湿度的变化情况 2.3 220 Rn 浓度的空间分布 在放入 220 Rn 源 30 min 后 ,用 4 枚 IP 板同时探测 220 Rn 室内的 220 Rn 浓度分布约 1.5 h,IP 上的 α 计数分布如图 4 所示。从图 4 可看出,虽然靠近 220 Rn 源处(上方第一阵列)的 α 计数相对较高(其均值约为下方所有阵列均值的 1.1 倍),但整体空间各单元栅格内的 α 计数基本相近。

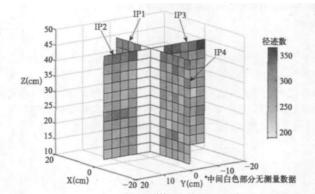


图 4 α 径迹在²²⁰Rn 室内的分布

经统计不同 IP 上各栅格内 α 计数的均值及其标准误差,得到总的相对误差(RSD) 见表 1。同时考虑到辐射测量自身存在有随机误差(RSD $_{R}$) 进一步计算得到由于 220 Rn 分布不均匀带来的相对误差(RSD $_{Tn}$) 的结果也列于表 1。从表 1 可看出,该 220 Rn 室内 220 Rn 浓度的空间分布差异均小于 5.5%,说明了 220 Rn 室内 220 Rn 浓度的空间分布均匀性良好。

表 1 不同 IP 板各单元栅格内 α 计数的相对误差

	113 184 130 183 183 183 183 183		
探测器	RSD	RSD_R	$\mathrm{RSD}_{\mathrm{Tn}}$
IP1	7.84%	6.01%	5.03%
IP2	7.00%	5.92%	3.72%
IP3	8.06%	5.92%	5.47%
IP4	8.09%	6.11%	5.30%

2.4 220 Rn 浓度随温湿度变化情况 通过控制相对湿度调节温度和控制温度调节相对湿度 测量得到 220 Rn 源相同时、不同温湿度条件下 220 Rn 室内的 220 Rn 浓度均值见表 2。从表 2 可看出,在通常的实验室环境温湿度条件下,温度和相对湿度与 220 Rn浓度呈明显的正相关关系,温度下降会导致 220 Rn 室 220 Rn浓度的降低,而湿度越高 220 Rn 浓度就越高。这主要是由于 220 Rn从 220 Rn 源析出受环境温湿度变化的影响 19,101 。实验结果表明 控制该 220 Rn 室内温度和湿度是保证 220 Rn 浓度稳定的必要条件;同时,该结果也说明了可以通过改变 220 Rn 浓度在一定范围内的调控。

表 2 温湿度变化对²²⁰ Rn 浓度的影响

控制方式	温湿度条件	²²⁰ Rn (Bq/m ³)	
	温 业	均值	标准差
控湿调温	I(30℃ 40% RH)	9 070	728
	II(20℃ #40% RH)	6 620	452
	III(10℃ 40% RH)	4 220	357
控温调湿	I(20℃ 20% RH)	4 050	331
	II(20℃ #0% RH)	6 490	529
	III(20℃ 60% RH)	11 930	870

2.5 220 Rn 室内的 220 Rn 浓度 在同一温湿度条件下(20 C 40 % RH) 用 Rad7 测氡仪对该 220 Rn 室进行了 3 天的连续测量 结果显示该 220 Rn 室内 222 Rn 浓度和 220 Rn 浓度的均值分别为(66 .1 ± 24.0) Bq/m3 和(6520 ± 186) Bq/m3 222 Rn 浓度仅为 220 Rn 浓度的约1%。说明了该 220 Rn 室内的 222 Rn 浓度很低 其对 220 Rn 浓度测量的影响可以忽略不计。

3 结论

本研究基于理化实验室内常用的恒温恒湿箱,设计了一个有效容积约为 200 L 的 220 Rn 室并自行制备了颗粒状 220 Rn 家。性能实验结果表明,该 220 Rn 室内的 220 Rn 浓度稳定可控,且具有良好的空间分布均匀性; 220 Rn 浓度平衡时间仅需 10 min 左右, 220 Rn 室内的 222 Rn 对 220 Rn 浓度的测量影响可忽略不计; 同时还可通过改变 220 Rn 室内的温度或湿度设置,在不更换 220 Rn 源的条件下来有效调节 220 Rn 室内的 220 Rn 浓度。本研究设计的 220 Rn 室可以用来开展 220 Rn 浓度测量的校准或比对试验等相关实验研究。

参考文献:

- [1] Doi M ,Kobayashi S. Characterization of Japanese wooden houses with enhanced radon and thoron concentrations [J]. Health Phys , 1994 , 66(3): 274 282.
- [2] Shang B , Chen B , Gao Y , et al. Thoron levels in traditional Chinese residential dwellings [J]. Radiat Environ Biophys , 2005 , 44(3): 193-199.
- [3] Chen J , Schroth E , MacKinlay E , et al. Simultaneous 222 Rn and 220 Rn measurements in Winnipeg , Canada [J]. Radiat Prot , 2009 , 134(2): 75 78.
- [4] Tokonami S , Yang M , Sanada , T. Contribution from thoron on the response of passive radon detectors [J]. Health Phys , 2001 , 80(6): 612-615.
- [5] Möre H , Falk R , Nyblom L. A bench top calibration chamber for ²²⁰Rn activity in air [J]. Environ Int , 1996 , 22 (Suppl. 1): 1 147 1 153.
- [6] 肖德涛, 赵桂芝, 肖拥军, 等. 小²²⁰ Rn 室的研究[J]. 核电子学与探测技术, 2005, 25(6): 577-579.
- [7] Rttger A , Honig A , Arnold D. The German thoron progeny chamber concept and application [J]. Appl Radiat Isot , 2009 , 67(5): 839 842.
- [8] Chen B , Zhuo W , Kong Y. Identification and counting of alpha tracks by using an imaging plate [J]. Radiat Meas , 2011 , 46(3): 371 – 374.
- [9] Zhuo W , Iida T , Furukawa M. Modeling radon flux from the Earth's surface [J]. Nucl Sci Techno , 2006 , 43 (4): 479 – 482.
- [10] Zhao C , Zhuo W , Chen B , et al. Characteristic and performance of a simple thoron chamber [J]. Radiat Prot Dosim , 2010 , 141(4) : 444 447.

(收稿日期:2011-05-03)